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Research highlights
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SCORCH: Improving structure-based virtual screening with machine 
learning classifiers, data augmentation, and uncertainty estimation

Abstract

Introduction

The discovery of a new drug is a costly and lengthy endeavour. The computational prediction of which small 
molecules can bind to a protein target can accelerate this process if the predictions are fast and accurate 
enough. Recent machine-learning scoring functions re-evaluate the output of molecular docking to achieve 
more accurate predictions. However, previous scoring functions were trained on crystalised protein-ligand 
complexes and datasets of decoys. The limited availability of crystal structures and biases in the decoy 
datasets can lower the performance of scoring functions.

Objectives

To address key limitations of previous scoring functions and thus improve the predictive performance of 
structure-based virtual screening. 

Methods

A novel machine-learning scoring function was created, named SCORCH (Scoring COnsensus for RMSD-
based Classification of Hits). To develop SCORCH, training data is augmented by considering multiple ligand 
poses and labelling poses based on their RMSD from the native pose. Decoy bias is addressed by generating 
property-matched decoys for each ligand and using the same methodology for preparing and docking 
decoys and ligands. A consensus of 3 different machine learning approaches is also used to improve 
performance.

Results

We find that multi-pose augmentation in SCORCH improves its docking power and screening power on 
independent benchmark datasets. SCORCH outperforms an equivalent scoring function trained on single 
poses, with a 1% enrichment factor (EF) of 13.78 vs. 10.86 on 18 DEKOIS 2.0 targets and a mean native pose 
rank of 5.9 vs 30.4 on CSAR 2014. Additionally, SCORCH outperforms widely used scoring functions in 
virtual screening and pose prediction on independent benchmark datasets. 

Conclusion

By rationally addressing key limitations of previous scoring functions, SCORCH improves the performance of 
virtual screening. SCORCH also provides an estimate of its uncertainty, which can help reduce the cost and 
time required for drug discovery.

Keywords: Docking; scoring; virtual screening; machine learning; drug discovery; neural networks

Introduction

Computational methods are playing an increasingly crucial role in drug discovery[1] and seek to reduce the 
time and cost involved. In structure-based virtual screening (SBVS), libraries of compounds are docked 

https://www.zotero.org/google-docs/?zHkKFp
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against the crystal structure of a target biomolecule, generally a protein, in an attempt to produce low or 
minimal energy poses for each ligand in a specified binding site[2,3]. The interaction of different docked 
poses and the target can be evaluated by scoring functions (SFs), which seek to estimate the interaction 
strength between the compound and the target. There are three main use cases for SFs[4]: 1) 
distinguishing binder from non-binder compounds for a given target (screening power), 2) predicting 
relative binding affinities (ranking power), and 3) identifying a near-native pose for a known ligand (docking 
power). A high screening power is likely more useful in early stages of the drug discovery pipeline, 
providing a principled way to prioritise compounds for experimental testing. Although the performance of 
SFs for virtual screening has improved over the last decade, novel strategies are needed to push the 
current capabilities and make computer-driven drug discovery widely applicable[5].

Classical SFs are generally linear functions with empirical, forcefield-based, or knowledge-based terms to 
estimate binding affinity[6]. While they are commonly used, their performance is limited by not capturing 
complex non-linear relationships or taking advantage of the increasing amount of structural data available 
to improve performance[7]. To overcome the limitations of classical SFs, various machine learning-based 
scoring functions (MLSFs) have been developed over the last decade, leveraging convolutional neural 
networks[8], support vector machines[9], and random forests[10–12]. MLSFs have demonstrated notable 
improvements in performance over classical SFs in virtual screening benchmarks[10,13–16]. Additionally, 
these improvements have been replicated in prospective studies[17–21]. Most MLSFs are regressors, 
predicting the numerical pKd of receptor-ligand interactions. However, a classification approach to affinity 
prediction is also a viable alternative[22] and could reduce false positive rates during virtual screening[19]. 

Neural networks (NNs) underlie some of the best-performing MLSFs available. NNScore 1.0, a classifier NN, 
outperformed Glide when it was introduced[23]. Hassan et al. outperformed previous MLSFs on 
crystallographic protein-ligand complexes when introducing DLScore, a deep NN for pKd prediction[24]. 
Furthermore, a wide-and-deep NN showed promise for binding affinity prediction using 1D amino acid 
sequences[25], although it has not been applied to 3D structure data. Gradient boosted decision trees 
(GBDTs) have also been previously applied to protein-ligand scoring with success[7,19] and it has been 
suggested GBDTs outperform deep learning methods on tabular data[26,27]. As tabular representations of 
protein-ligand interactions are common with MLSFs[10–12,23,24,28,29] and are similarly employed here, 
GBDTs are also worth exploring further. In addition, while it is generally accepted that consensus strategies 
can improve performance in virtual screening and machine learning[30–33], no consensus scoring function 
has been proposed combining multiple machine learning algorithms.

MLSFs are typically trained on co-crystalized structures and experimental affinity binding data for receptor-
ligand complexes from datasets such as PDBbind[34] and BindingMOAD[35]. When training MLSFs on these 
datasets, crystallographic ligand poses are commonly used as examples of strong binders. However, 
redocking the co-crystallized ligands provides data closer to that which will be scored once the MLSF is 
deployed. This strategy was employed for RF-Score v4[12], resulting in improved test set performance. RF-
Score-VS[10] was trained and evaluated 15,426 docked actives and 893,897 docked inactives from DUD-
E[36] rather than native or redocked co-crystallised ligands, yielding improved performance in virtual 
screening. Despite the growing size of these datasets, the number of experimentally verified weak binders 
is often insufficient for SF training. Efforts have been made to produce datasets of experimentally verified 
active and inactive receptor-ligand pairs, but they are limited in their utility and size. For example, LIT-PCBA 
contains confirmed inactive ligands for only 15 target receptors[37]. To include more examples of non-
binders, researchers have used datasets of decoy ligands, such as DUD-E[36]. These decoys are designed to 
mimic physicochemical properties of active ligands while differing in 2D topology, thereby minimising their 
likelihood of binding. However, some decoy datasets contain fundamental structural biases, which can let 

https://www.zotero.org/google-docs/?gWsc3G
https://www.zotero.org/google-docs/?DdvS45
https://www.zotero.org/google-docs/?ncYVyH
https://www.zotero.org/google-docs/?EoIvsU
https://www.zotero.org/google-docs/?gFsMqM
https://www.zotero.org/google-docs/?UDjCh5
https://www.zotero.org/google-docs/?wd0DRI
https://www.zotero.org/google-docs/?ivd8Bp
https://www.zotero.org/google-docs/?qlc4cT
https://www.zotero.org/google-docs/?lAC3Vp
https://www.zotero.org/google-docs/?AzfdCr
https://www.zotero.org/google-docs/?C88FUV
https://www.zotero.org/google-docs/?wmL9YY
https://www.zotero.org/google-docs/?nn2zqQ
https://www.zotero.org/google-docs/?3bLUAa
https://www.zotero.org/google-docs/?4w2Smf
https://www.zotero.org/google-docs/?nUwUGk
https://www.zotero.org/google-docs/?Y5UJAP
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https://www.zotero.org/google-docs/?s4p2jc
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MLSFs learn spurious differences between actives and decoys instead of ligand binding patterns[38], 
compromising their performance and generalisability. A well-trained MLSF should have learned the 
importance of receptor-ligand atom interactions and their respective distances; high scores should only be 
assigned to well docked strong binders. Recently, DeepCoy has been introduced as a method to generate 
property-matched decoys[39], which could help alleviate systemic biases in training data. Previous 
research focusing on ligand pose prediction has employed a regression approach to predicting pose RMSD 
rather than binding affinity, with demonstrable improvements to SF docking power[40,41]. Additionally, 
use of multiple docked poses of a given compound as a data augmentation strategy was explored as a 
method for improving docking power. With RF-Score-v4[12], it was found that use of multiple poses had a 
detrimental effect on binding affinity prediction, however no RMSD-based labelling was implemented to 
distinguish between well docked and poorly docked poses. Stratifying pose labelling by both RMSD and 
binding affinity could potentially improve both docking and screening power.

In this work, we present 8 MLSFs for virtual screening that serve as binary classifiers of docked receptor-
ligand complexes. We explore the impact of different algorithms, as the SFs use either GBDTs, feedforward 
NNs, wide-and-deep NNs, or a consensus of all three methods. We aimed to address some of the 
limitations of existing MLSFs by employing unbiased decoy ligands generated by DeepCoy[39], identically 
pre-processing actives and decoys from SMILES strings, and supplying multiple docked ligand poses 
labelled by binding affinity and RMSD from the crystallographic pose. Each SF was trained on over 45,000 
data points. Given SF performance on test data is often not indicative of virtual screening performance[42], 
SFs were validated on third party datasets distinct from initial training data to imitate virtual screening as 
closely as possible. The best performing scoring function, SCORCH (Machine Learning Scoring COnsensus 
for RMSD-based Classification of Hits), pushes the current capabilities of virtual screening and is openly 
available to the scientific community.

https://www.zotero.org/google-docs/?x2k9zO
https://www.zotero.org/google-docs/?08n25b
https://www.zotero.org/google-docs/?hM744d
https://www.zotero.org/google-docs/?LF41mI
https://www.zotero.org/google-docs/?P6g67p
https://www.zotero.org/google-docs/?oj2les
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Materials and methods

The workflow in Figure 1 outlines the steps taken to develop SCORCH. Further details on the data 
preparation steps can be found in Figure S1.

Figure 1. Production workflow of single-pose and multiple-pose machine learning models. The single-pose 
dataset consisted of one pose for each protein-ligand pair and poses were labelled solely based on binding 
affinity. The multiple-pose dataset consisted of multiple poses for each protein ligand pair and poses were 
labelled based on binding affinity and RMSD from the native crystal pose. On each dataset, a GBDT (using 
XGBoost), a FF NN, and a W&D NN were trained and a consensus of the three model types was considered. 
Single-pose models were developed to evaluate whether using multiple poses with labelling stratified by 
both RMSD and binding affinity improves performance. SCORCH is a consensus of the three models trained 
on multiple-pose data. Additional details on data preparation (white boxes) are indicated in Figure S1. 

Datasets

The Refined Set (n=4,854 complexes under 2.5 Å resolution and 0.250 R-factor with binding data in the 
form of Ki or Kd), Non-redundant Set (n=3,187 complexes under 2.5 Å resolution where only one complex 
per protein family is included as a representative entry) and Highly Trustworthy Set (n=120 complexes with 
an extensive list of inclusion criteria) were downloaded from PDBBind, Binding MOAD, and Iridium, 
respectively[34,35,43]. These datasets were chosen to ensure that only high-resolution structures (under 
2.5 Å) with reliable experimental binding data stated in primary literature were used for SF training. 

Duplicate complexes (n=912) were removed. Complexes with peptide or amino acid-containing ligands, or 
complexes with multiple bound active ligands (n=757) were removed from the dataset using BioPython 
1.78[44]. A ‘receptor.pdb’ file was created from each remaining complex protein (n=6,492) containing only 
non-water atoms within 14 Å of the ligand using BioPython 1.78. To ensure the accuracy of side chain 
positions close to bound ligands, any receptor files with alternative amino acid states within 8 Å of ligand 
atoms were excluded (n=590). 

To maximise the likelihood of accurate docking results, ligands from the remaining complexes were 
required to have a molecular weight (MW) ≤ 650 Da and ≤ 20 rotatable bonds (nRot). MW and nRot for 
each ligand were calculated using OpenBabel 3.1.1 as part of Open Drug Discovery Toolkit (ODDT) 0.7 and 
MGLTools 1.5.6, respectively[45–47]. Ligands exceeding these cutoffs (n=583) or ligands incompatible with 
MGLTools 1.5.6 (n=54) were excluded from the dataset. Canonical SMILES were extracted for the ligands in 

https://www.zotero.org/google-docs/?WtPJ6Y
https://www.zotero.org/google-docs/?V6PhHH
https://www.zotero.org/google-docs/?RDs749
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the remaining complexes (n=5,265) from PDBBind for PDBBind and Iridium sourced structures, and from 
Binding MOAD for MOAD structures. 

Decoys were used here to provide training data examples of poor or non-binder molecules. As commonly 
used decoy selection tools may introduce decoy bias, we employed a novel tool, DeepCoy, for decoy 
generation[38,39]. For each ligand SMILES, 1000 decoys were produced, and the best 10 decoys with nRot 
<20 were selected using DeepCoy’s select_and_evaluate_decoys.py script according to previously described 
criteria[39]. Complexes with no available ligand canonical SMILES (n=52), a canonical SMILES incompatible 
with DeepCoy (n=51), incompatibilities with GWOVina (n=5) or incompatibilities with spyrmsd (n=55) were 
excluded, leaving a dataset of 5,102 protein-ligand complexes and 51,020 decoy ligands for a total of 
56,122 individual protein-ligand instances.

Active protein-ligand complexes (n=5,102) were randomly split into training (n=4,131), test (n=511) and 
validation (n=460) sets, stratified by structure resolution and dissociation constant to ensure identical 
distributions across all three sets using scikit-learn 0.24.2 StratifiedShuffleSplit function[48]. PDB complex 
IDs were used to create splits. All decoy molecules and active ligand poses were assigned to the split of 
their source PDB complex ID to ensure no leakage between splits.

Data preparation and docking

Canonical active ligands and DeepCoy-generated decoys were prepared for docking solely from their 
SMILES strings. RDKit 2018.09.01’s MolFromSmiles and EmbedMolecule functions were employed to assign 
suitable 3D coordinates to ligand atoms; generated 3D ligands were saved as pdb files with the 
MolToPDBFile function[49]. MGLTools 1.5.6’s prepare_ligand4.py script was used to add Gasteiger charges, 
add hydrogens, and merge non-polar hydrogens with their parent atoms for RDKit produced pdbs. 
MGLTools 1.5.6’s prepare_receptor4.py was used to prepare receptor pdbs in the same way. Active and 
decoy ligands were then docked against their respective receptors using GWOVina 1.0[50], with up to 20 
poses produced for active ligands, and up to 5 poses produced for decoy ligands. All docking was performed 
with the following settings: exhaustiveness=32 (a measure of thoroughness of docking search space 
exploration), num_wolves=40 (the number of agents used to explore the search space), num_modes=20 
(the maximum number of docked poses to produce - 5 for decoys), energy_range=4 (the maximum 
difference in GWOVina predicted binding affinity between returned poses). A padding of 12 Å in all 
coordinates was added to the native ligand pose position to define a box for docking.

Pose labelling

For labelling purposes, Kd and inhibition constant (Ki) were considered roughly equivalent. Strong binders 
were defined as complexes with a Kd(Ki) ≤ 25μM and were assigned to class 1, and the remaining weak 
binder complexes with a Kd(Ki ) > 25μM were assigned to class 0. A few complexes had binding affinities 
reported as IC50. For these complexes, the class was estimated considering the Cheng-Prusoff equation[51]:

𝐾𝑖 =
𝐼𝐶50

1 +
[𝑆]
𝐾𝑚

Since IC50 values must be greater than the corresponding Ki values, complexes with an IC50 of ≤25 μM were 
assigned a class of 1. Complexes with an IC50 >250 μM were considered weak binders and assigned a class 
of 0. Complexes with an IC50 value between 25 μM and 250 μM, and complexes with binding data stored in 
other formats (CC50, AC50) were previously excluded.

https://www.zotero.org/google-docs/?YqOQ3T
https://www.zotero.org/google-docs/?PWykde
https://www.zotero.org/google-docs/?SZ1X34
https://www.zotero.org/google-docs/?Xp32wc
https://www.zotero.org/google-docs/?LF9Fts
https://www.zotero.org/google-docs/?lgj6pV
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Additionally, for each active ligand pose, symmetry-corrected RMSD from the crystallographic ligand pose 
was calculated using spyrmsd 0.5.0[52] (RMSD could not be calculated for 5klp test set ligand poses due to 
extensive planes of symmetry). Two datasets were created, one considering a single docked pose for each 
ligand, and one considering multiple docked poses for each ligand.

The single-pose dataset consisted of the best pose for each active and decoy ligand as scored by GWOVina, 
resulting in a dataset of 56,122 protein-ligand complexes, of which 45,441 were used for training.

For the multi-pose dataset, poses of strong binders with an RMSD < 2.0 Å from the experimental pose were 
assigned a label of 1. All ligand poses with an RMSD >2.0 Å and < 4.5 Å were excluded and poses with an 
RMSD >4.5 Å were assigned a label of 0. All poses of weak binders were assigned a label of 0 regardless of 
their RMSD. For each active, a maximum of three poses labelled 0 and five poses labelled 1 were included. 
Poses were prioritised according to their GWOVina affinity scores where the number of suitable poses 
exceeded these thresholds. For each decoy, a single pose was randomly selected for inclusion and assigned 
a label of 0, producing a dataset of 75,859 protein-ligand pose complexes of which 61,411 were used for 
training (Figure S1).

Figure 2. RMSD-based pose labelling example for PDB structure 1a0q. a) Docked poses (green) less than 2 Å 
from the crystal pose (thick blue lines) are given a label of 1. b) Docked poses (olive) between 2 Å and 4.5 Å 
from the crystal pose (thick blue lines) are excluded from the dataset. c) Docked poses (red) over 4.5 Å from 
the crystal pose (thick blue lines) are given a label of 0.

Feature computation

For every complex, BINANA 1.3 was used to calculate 531 features describing atom-type pairwise counts 
within 2.5 Å and 4.0 Å, ligand atom types and nRot, summed pairwise electrostatic energies, active-site 
flexibility, hydrogen bonds, hydrophobic contacts, stacking interactions, cation-pi interactions, and salt 
bridges[29]. BINANA 1.3 ligand atom type tallies were instead implemented as binary features indicating 
the presence (1) or absence (0) of any number of a given atom type in the ligand.

Additionally, extended connectivity interaction features (ECIFs) were extracted for each protein-ligand 
complex as described previously[53]. ECIF atom types indicate atomic symbol, valency, count of bound 
heavy atoms and hydrogens, aromaticity state, and ring membership. Pairs of detailed protein atom types 
(n=22) and ligand atom types (n=70) within 6.0 Å were tallied to produce 1,540 ECIFs. Lastly, Kier flexibility 
for each compound was calculated as described previously[54]. 

Feature selection was performed on single pose and multiple pose training sets to identify the optimal 
combination of features for SF performance; validation and test set data were left unseen. Variances and 

https://www.zotero.org/google-docs/?SaJZrf
https://www.zotero.org/google-docs/?mgDdbe
https://www.zotero.org/google-docs/?KCkbbE
https://www.zotero.org/google-docs/?YezLNt
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correlations were calculated using SciPy 1.5.4[55]. Variance was calculated for all 2,072 features, and 
features with zero variance were removed. Pairwise Pearson correlation was calculated for the remaining 
features. Additionally, the Pearson correlation of each feature and the binding label was calculated. 
Features with a pairwise correlation >0.9 were identified and, for each pair, the feature with the lowest 
Pearson correlation to the binding label was removed. Features were then scaled to between 0 and 1 using 
scikit-learn’s MaxAbsScaler function. Recursive feature elimination with three-fold cross-validation was 
performed on the scaled features using scikit-learn’s RFECV function using a random forest classifier. 
AUCPR (see section 2.9) of predictions was recorded, and the classifier was asked to rank the importance of 
each of the features in its predictions. The least important feature was iteratively removed until the subset 
of features that produced the highest average cross-validated AUCPR was identified (single pose n=487, 
multiple pose n=492 features).

Machine-learning models

Three separate machine learning classification approaches were employed - a gradient boosted decision 
tree (GBDT), a feedforward neural network, and a wide-and-deep neural network. Two models were 
produced using each approach, trained on either single pose or multiple pose datasets.

Gradient boosted decision trees

All GBDT models were trained using XGBoost 1.4.2[56]. GBDTs are a sequential ensemble of decision trees, 
where each tree is trained to predict the error of previous trees. Hyperparameter tuning was performed 
using five-fold cross-validation on both single and multiple pose training sets with scikit-optimize 0.8.1’s 
gp_minimize function (Table S1)[57]. Single and multiple pose models were trained using the identified 
optimum hyperparameters with the native XGBoost API using the training and validation sets previously 
prepared.

Neural network models

Feedforward and wide-and-deep neural networks were designed with a dropout layer followed by three 
dense layers (Figure S2). Wide-and-deep neural networks had a concatenation layer between the outputs 
of the final dense layer and those of the dropout layer. Hyperparameter tuning and model training were 
performed with Tensorflow 2.4.0, Keras 2.4.3, and scikit-learn[48,58,59]. Grid search hyperparameter 
tuning was performed using five-fold cross-validation on both single and multiple pose training sets (Table 
S2). Hyperparameter combinations were ranked by average cross-validated AUCPR. For each model type, 
the top 100 hyperparameter combinations were used to train 100 networks, which were ranked by 
validation set AUCPR. Consensus predictions were derived by averaging the network outputs. Consensus 
with varying numbers of networks were evaluated on the validation set using AUCPR (Figure S3). For each 
model type, a consensus of the top 15 models was subsequently selected for test set and independent 
benchmarking evaluation; this is the default setting in SCORCH.

DEKOIS 2.0 virtual screening external dataset

All active ligands and decoys were obtained for a previously described diverse subset of 18 DEKOIS 2.0 
protein targets[60,61]. Protein receptors were obtained from PDBBind if available or from the PDB 
otherwise. 14 Å receptor pdbqt files were produced using an in-house Python script and MGLTools 1.5.6 as 
described above. Active and decoy ligands were converted to pdb format with RDKit 2018.09.01 and 
prepared with MGLTools 1.5.6 as described above. One decoy for ADRB2 (ZINC05822747) was discarded as 
it was incompatible with prepare_ligand4.py. 20 docked poses were produced for each active and decoy 
ligand using GWOVina 1.0.

https://www.zotero.org/google-docs/?EQaGSM
https://www.zotero.org/google-docs/?xpktWE
https://www.zotero.org/google-docs/?BP1IBC
https://www.zotero.org/google-docs/?upCrwM
https://www.zotero.org/google-docs/?lh0riB
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CSAR 2014 benchmark pose prediction external dataset

CSAR benchmarking structures were obtained from the relevant publication site[62]. Pose prediction 
receptor files were converted to pdb format with openbabel 2.4.1 and prepared with MGLTools 1.5.6 as 
described above. Since the dataset consists of docked poses to score, no new docking was performed. Pose 
prediction ligand poses were converted to pdb format with RDKit 2018.09.01 and prepared with MGLTools 
1.5.6 as described above. 

Comparison with other scoring functions

Some third-party scoring functions were used to compare predictions on the test set, the DEKOIS 2.0 set, 
and the CSAR 2014 pose prediction benchmark dataset. DLSCORE was cloned from the publication’s GitHub 
and run in the supplied virtual environment[24]. NNScore 1.0 was obtained from the publication’s 
GitLab[23]. NNScore 2.0 scores were obtained simultaneously through the NNScore 2.0 version integrated 
with DLSCORE[28]. The RF-Score-VS v2 binary was obtained from the publication GitHub[10]. We aimed to 
include several other scoring functions; however, this was not possible due to a lack of robust, usable, and 
deployable implementations.

Evaluation metrics

Model performance was evaluated using the area under the precision recall curve (AUCPR), Enrichment 
Factor (EF), and an in-house certainty metric. 

AUCPR

AUCPR is a measure of binary classification performance across varying thresholds[63]. In this case, the 
threshold would be the value of the scoring function above which a compound is classified as a binder. The 
equations for recall and precision are given as:

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝑇𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝑇𝑁

Where TP, FP, and TN represent the number of true positive, false positive, and true negative predictions 
respectively. SF predictions are ranked from highest to lowest; at each ranking threshold, recall and 
precision were calculated using Rocker 0.1.4[64]. Minor modifications were made to Rocker 0.1.4 to enable 
calculation of precision. Recall and precision values are plotted as a precision-recall curve. The area under 
the curve was calculated using scikit-learn’s auc function.

Enrichment factor

The enrichment factor (EF) is a useful indicator of screening power. It indicates how many times more 
active compounds would be discovered if experimentally testing the top x percent of compounds ranked by 
the scoring function, as opposed to randomly testing x percent of compounds in the library. The EF at a 
given % threshold  is calculated as follows[65].

𝐹𝐴𝑥 =
𝐴𝑥

𝑁𝑥

𝐹𝐴𝑡𝑜𝑡𝑎𝑙 =
𝐴𝑡𝑜𝑡𝑎𝑙

𝑁𝑡𝑜𝑡𝑎𝑙

https://www.zotero.org/google-docs/?WuaG41
https://www.zotero.org/google-docs/?C4uo94
https://www.zotero.org/google-docs/?STVQhH
https://www.zotero.org/google-docs/?B4WfEl
https://www.zotero.org/google-docs/?n4Gm17
https://www.zotero.org/google-docs/?yoCdtB
https://www.zotero.org/google-docs/?nGyfkS
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=x#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=x#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=x#0
https://www.zotero.org/google-docs/?4A70yV
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𝐸𝐹𝑥 =
𝐹𝐴𝑥

𝐹𝐴𝑡𝑜𝑡𝑎𝑙

Where Ax is the number of actives among the top x% molecules scored by the model, Nx is the number of 
molecules in the top x%, FAx is the fraction of actives in the top x%, Atotal is the total number of actives, Ntotal 
is the total number of molecules, and FAtotal is the total fraction of actives. EF was calculated using ODDT 0.7 
at thresholds of 0.5%, 1.0%, 2.0%, and 5.0%.

SCORCH certainty

We define a certainty metric for the consensus SFs by normalising the variation across the individual model 
predictions that contribute to the consensus.

𝜃 = 1 ― 𝜎

where  is the population standard deviation of the contributing models’ predictions. Since there are 3 
models in each consensus with a prediction range of [0,1], the maximum and minimum θ values are:

𝜃𝑚𝑎𝑥 = 1

𝜃𝑚𝑖𝑛 = 0.529    (3 𝑠.𝑓.)

θ is then normalised to the range [0,1] as follows:

𝐶𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 =  
𝜃 ― 𝜃𝑚𝑖𝑛

𝜃𝑚𝑎𝑥 ― 𝜃𝑚𝑖𝑛

Thus, certainty values closer to 1 indicate that the model is more confident in the predicted score, whereas 
values closer to 0 indicate lower confidence.

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=A_%7Bx%7D#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=x%5C%25#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=N_%7Bx%7D#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=x%5C%25#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=FA_%7Bx%7D#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=x%5C%25#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=A_%7Btotal%7D#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=N_%7Btotal%7D#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=FA_%7Btotal%7D#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=0.5%5C%25#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Csigma#0
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Results and discussion

The aim of our work was to implement and study the impact of different strategies on the performance of 
machine learning-based scoring functions. Firstly, the mining and processing of three protein-ligand 
complex databases (see Methods) led to the generation of a dataset containing 5,102 high quality 
complexes with known experimental binding data. To our knowledge, this is the largest dataset of 
experimental high-quality protein-ligand complexes used to train an MLSF to date. Extensive feature 
engineering and selection were also performed to ensure a range of highly informative model inputs. A 
common approach to descriptor generation for MLSFs is to use a single program to produce pairwise atom 
tallies. In previous studies, these descriptors are passed directly to MLSFs without prior evaluation[10,24]. 
Here, we used multiple programs to generate over 2,000 descriptors, before performing feature selection 
to determine the optimal descriptors to use as features for training. 

Several strategies were applied to mitigate decoy bias. Firstly, a novel ML-based method, DeepCoy[39], was 
employed to generate challenging unbiased decoys, avoiding biases present in existing decoy datasets. 
Additionally, an identical pre-processing pipeline was used for all ligands (see Methods). This removes any 
differences between active and decoy ligand 3D conformations arising from pre-processing steps. Thirdly, 
six models were produced using three different machine-learning algorithms (see Methods); three were 
trained on a single docked pose for each ligand, and three were trained on multiple RMSD-labelled poses 
for each ligand. In addition, single and multi-pose consensus models were produced by taking the mean of 
the three single-pose and multi-pose models predictions, respectively. The multi-pose consensus model is 
referred to as SCORCH.

For the multi-pose models, the RMSD-based labelling of ligand poses ensures that only strong binders with 
the right conformation are rewarded during training, and that docked decoys and poorly docked active 
ligands are punished. We reasoned that this should further reduce decoy bias, as examples of weak binders 
are not exclusively decoy molecules. This labelling strategy also serves to augment the size of the training 
data and could produce scoring functions better behaved in real virtual screening applications, where 
ligands are evaluated based on their docked poses.

Screening power evaluation on the test set

To assess the utility of our models in virtual screening, they were first evaluated on unseen test set 
complexes and their performance was compared to that of existing MLSFs. For all evaluated functions, all 
available poses for each ligand in the test set were scored and the maximum score out of all supplied poses 
was taken as the score for that protein-ligand complex. Hence, if a single pose out of many obtains a high 
score, the ligand is predicted to be a binder. When none of the supplied poses obtains a high score, the 
ligand is predicted as a non-binder. While there are other possibilities for aggregating scores from multiple 
poses, taking the maximum scoring pose showed the best performance by both AUCPR and EF across both 
our models and third-party scoring functions (Figure S4). Notably, this method may outperform the 
commonly used simpler approach of only scoring the lowest energy pose returned by molecular docking 
software. 

AUCPR values were calculated for our models as well as third party scoring functions (Figure 3). All models 
trained on multiple poses achieved at least 0.814 AUCPR on the test set. The consensus scoring functions 
are the highest performing for both single-pose and multi-pose models, with 0.854 and 0.837 AUCPR 
respectively, evidencing the benefit of a consensus over different types of algorithms. It is notable that, for 
all single-pose models, AUCPR is greater than that of equivalent multi-pose models, and all produced 
models outperform third-party scoring functions. The high AUCPR values on the test set do not indicate 
overfitting to the training data for any of our produced models, and show promise to improve the accuracy 
of virtual screening. However, validation against an independent benchmarking dataset is needed for fair 

https://www.zotero.org/google-docs/?mcstfk
https://www.zotero.org/google-docs/?uw41SE
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comparison, as decoy bias and familiarity with the data pipeline could be contributing to the performance 
of our models.

Figure 3. Precision-Recall curves for produced machine-learning models and third-party scoring functions 
on 5,621 test set complexes. 

Additionally, while AUCPR is a useful global indicator of scoring function performance, it is insensitive to the 
importance of early recognition. Scoring functions are often tasked with identifying a subset of top-ranked 
compounds as “virtual hits” to be considered for experimental testing. Hence, we also evaluated our 
produced scoring functions using enrichment factor (EF) at four cutoffs (top 0.5%, 1%, 2%, and 5%). 
Maximum mean EF across all four cutoffs was achieved by SCORCH (Table S3). The multi-pose models all 
achieved higher mean ranks of actives in a top subset of the test set, favouring them for use in virtual 
screening. 
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Screening power on an independent benchmarking set

Since decoy bias and non-representative training data could produce misleading test-set performance, the 
models were further validated on a diverse subset of an independent benchmarking set, DEKOIS 2.0. This 
subset contains 18 diverse receptors, with 1200 decoys and 40 actives present for each target. Ligands 
were docked, scored and ranked by our models and third-party scoring functions for all 18 targets, and 
overall AUCPR values were calculated (Figure 4A). As 40 actives and 1200 decoys were present for each 
target receptor, an unskilled classifier should achieve an AUCPR of 40/1240, or ~0.03. All tested scoring 
functions performed better than this baseline score.

Except for the single-pose feedforward neural network model, which was outperformed by RF-Score-VS v2, 
our models outperformed all third-party scoring functions. All multi-pose trained models outperformed the 
third-party scoring functions; the wide-and-deep neural network achieved the lowest multi-pose model 
AUCPR of 0.165, while the best performing third party scoring function RF-Score-VS v2 achieved an AUCPR 
of 0.151. The results of the validation on this independent benchmark demonstrate a genuine increase in 
scoring function performance. The best performing model was the consensus of multi-pose models 
(SCORCH), with an AUCPR of 0.198. To our surprise, the third-party machine learning scoring functions 
NNScore 1, NNScore 2 and DLScore failed to outperform the GWOVina scoring on this benchmark set. 
These functions were trained with crystal poses as examples of active ligands, whereas the much better 
performing RF-Score-VS v2 was trained on docked ligand poses; perhaps these models are overfitted to 
crystallographic active poses.

Notably, the multi-pose trained models outperformed the equivalent single pose-trained models. Since the 
poses and labels supplied during training were the sole difference when building these models, this 
indicates that the employed methodology of RMSD-based pose labelling leads to better performing scoring 
functions. 

While third-party models are still outperformed by our models, there is a notable decrease in AUCPR when 
comparing test set and DEKOIS 2.0 results. This could in part be due to single and multi-pose models 
overfitting to DeepCoy decoys despite the prior steps taken to mitigate bias. A possible solution to this 
would be to train on a heterogenous mix of decoys from multiple sources. Experimentally determined 
inactives from datasets such as LIT-PCBA would be excellent, however, these datasets are limited in size. It 
might also be advisable to consider a more sophisticated splitting of training, validation, and test sets when 
building novel scoring functions. For instance, one might consider the similarity between receptors and the 
similarity between ligands to obtain a more realistic estimate of performance from test sets.
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Figure 4. SCORCH is the best performing scoring function on a subset of the DEKOIS 2.0 independent 
benchmarking dataset. a) Precision-Recall curves for produced machine-learning models and third-party 
scoring functions on 18 DEKOIS 2.0 targets. b) Enrichment factors at 0.5%, 1%, 2% and 5% for produced 
machine-learning models and third-party scoring functions across 18 DEKOIS 2.0 targets. White diamonds 
indicate the mean EF.

The low proportion of actives and high proportion of inactives in DEKOIS 2.0 makes it well suited to assess 
virtual screening performance. For each receptor, EF at 0.5%, 1%, 2% and 5% was calculated (Figure 4B). As 
mentioned above, the enrichment factor captures the real-world utility of a scoring function for primary 
virtual screening.

SCORCH achieved the highest mean EF at all chosen EF thresholds, with mean EF0.5=15.01, EF1=13.78, 
EF2=11.44 and EF5=6.89. As with AUCPR, this is superior to the consensus of the single-pose models, 
further demonstrating the performance boost provided by RMSD-based pose labelling. Additionally, 
SCORCH outperformed all third-party scoring functions, with mean enrichment factors ~27% higher than 
the best performing third party scoring function, RF-Score-VS v2. Notably, RF-Score-VS v2 achieves higher 
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mean enrichment factors than both single-pose trained neural network models at EF05 and EF1. These 
results support previous observations that GBDTs and random forests are the best suited algorithms for 
structure based virtual screening[14]. Overall however, these EF results are in agreement with the AUCPR 
curves above. Additionally, by both EF and AUCPR, SCORCH’s DEKOIS 2.0 performance increases with the 
number of poses it is shown for a given ligand (Figure S5). This indicates SCORCH is highly specific for well 
docked strong binders; perhaps supplying more than 20 poses per ligand could see further performance 
improvements. 

As is commonly observed with scoring functions, performance varies widely between receptors. Even with 
the best performing approach, SCORCH, EF0.5 was 0 for four DEKOIS 2.0 targets (ACHE, DHFR, CATL, 
MDM2), while the maximum possible EF0.5 of 31 was achieved for three targets (P38-alpha, ERBB2, ACE). 
To help navigate this variability in SCORCH, we investigated using a “certainty” metric. This metric is based 
on the standard deviation of SCORCH input models and can be regarded as a measure of confidence in the 
predicted classification. We observe that, across the whole DEKOIS 2.0 dataset, a higher SCORCH certainty 
is strongly and significantly correlated with smaller error in SCORCH predictions (p=2e-16, Pr = -0.45) 
(Figure 5A). The certainty value is thus a useful and robust metric which may allow a priori identification of 
poor enrichment performance. Moreover, we also observe that the average model certainty over the top 
0.5% of ligands showed a significant positive correlation with enrichment factor (p=0.013, Pearson 
correlation Pr=0.57) (Figure 5B). Hence, SCORCH certainty values can help in assessing its overall utility for a 
given target as well as the likelihood of success of individual compounds in virtual screening results.

https://www.zotero.org/google-docs/?nzOiTF
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Figure 5. SCORCH certainty metric is a robust a priori indicator of enrichment success. a) Relationship 
between SCORCH certainty and residuals across all 22,319 DEKOIS 2.0 actives and decoys. Fitted regression 
line shown in red with the line equation displayed on the top left (p=2e-16, Pr=-0.45); 95% confidence 
intervals of the regression line are shown in grey. b) Relationship between enrichment factor and mean 
SCORCH certainty across top 0.5% of ligands for 18 DEKOIS 2.0 receptors. Fitted regression line shown in 
red (p=0.013, Pr=0.57); 95% confidence intervals of the regression line are shown in grey.



18

Docking power and ranking power evaluation

The docking power of a scoring function refers to its ability to identify the docked pose that most closely 
resembles the native ligand pose. MLSFs trained on crystal structures frequently have poor docking power. 
It has been suggested that this problem is inherent to the use of pairwise atom tallies as features, allowing 
the ML models to learn ligand and receptor atom type counts rather than the impact of their pairwise 
distances[66]. If the strategy of training on multiple RMSD labelled docked poses is strengthening the 
performance of our scoring functions, then one would expect high screening power to be accompanied by 
an increased docking power. 

Docking power was assessed for 510 test set crystal ligands. For each complex, docked ligand poses were 
ranked by RMSD from the native ligand pose. An SF with good docking power would therefore rank the 
pose with the lowest RMSD highly. The mean rank of the lowest RMSD pose is shown in Figure 6A. Our 
single-pose models already had an improved mean rank over all evaluated third party ML-based SFs, 
showing a docking power comparable to GWOVina 1.0. Importantly, the models which assigned the highest 
rank to the lowest RMSD poses were all trained on multiple RMSD labelled docked poses, confirming that 
this training methodology greatly reduces pose insensitivity and increases docking power. Indeed, the 
mean RMSD of the highest scored pose for all multi-pose models was under 3 Å, and the median RMSD 
under 2 Å (Figure S6). This improvement in docking power is consistent across all poses, with multi-pose 
models averaging greater Spearman’s rank and Kendall Tau between RMSD and model score (Table S4). 
Collectively, this demonstrates that our multi-pose MLSFs do in fact reward strong binders in the correct 
binding pose[67].

To validate the docking power of our SFs, we performed an evaluation against the CSAR 2014 native pose 
identification benchmark. This dataset contains 22 active ligands across three receptors. Each ligand has 
one near native pose (<1Å RMSD) and 199 decoy poses (>2Å RMSD). For each ligand, all 200 poses were 
scored and the rank of the near native pose identified (Figure 6B). As with the test set, our SFs trained on 
multiple poses improve on preceding ML-based methods in terms of mean native pose ranking. 
Additionally, multi-pose trained models outperformed single-pose trained models in all cases. Interestingly, 
our multi-pose trained models show superior docking power to GWOVina on the test set, but are 
outperformed by GWOVina on this benchmarking dataset. Perhaps the models are slightly overfit on 
GWOVina-produced poses. In that case, training on docked poses from several docking programs could 
potentially improve their docking power. However, while GWOVina has high intra-ligand docking power 
and low inter-ligand screening power, SCORCH performs well by both metrics.

If the reason for improved docking and screening power is indeed that SCORCH is truly learning the key 
factors which drive receptor ligand binding, we hypothesised that this should be reflected in its ranking 
power as well; ligands with higher affinities should be assigned higher scores. To investigate this, we 
analysed the relationship between pKd and SCORCH score for all 511 test set complexes (Figure S7A). We 
observed a highly significant positive correlation between test set complex pKd and SCORCH score (p=2.2e-
16, Pr=0.41). When examined, a similar correlation was present for the 244 DEKOIS 2.0 actives where 
binding data was available as Kd or Ki, indicating that SCORCH’s ranking power holds true on an independent 
benchmark set (p=3.97e-05, Pr=0.26) (Figure S7B). While this correlation is weak, it demonstrates that 
higher SCORCH scores are assigned to stronger binders, despite all training examples of ligands with a Kd ≤ 
25μM being given a blanket label of 1; no continuous pKd or Kd values were ever shown to the models 
during training. This significant relationship further indicates that SCORCH truly has learned which features 
drive strong receptor ligand binding.

https://www.zotero.org/google-docs/?i2OIT7
https://www.zotero.org/google-docs/?VFPis7
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Figure 6. RMSD-based pose labelling used in SCORCH improves the docking power compared to other 
MLSFs. a) Ranks of the lowest RMSD docked ligand pose across 510 test set complexes for produced 
machine-learning models and third-party scoring functions; White diamonds indicate the mean rank with 
the value displayed above each point. b) Ranks of the near native pose across the CSAR 2014 pose 
prediction benchmark for produced machine-learning models and third-party scoring functions. White 
diamonds indicate the mean rank with the value displayed above each point.

Model Feature Importances

To gain insights on the origin of the models’ performances, we examined feature importances for all our 
models by iteratively replacing each input feature with random noise and noting the performance decrease 
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on the validation set (Figure 7). Interestingly, the NN-based models rely heavily on a single input, with 
multi-pose models experiencing a performance decrease of over 14% based on a single feature, 2.5 (A, HD). 
This BINANA feature is a count of hydrogen donor and acceptor atoms within 2.5 Å. It thus captures strong 
hydrogen bonds, which certainly are a key intermolecular interaction in many small molecule-protein 
complexes. In single-pose neural network models, randomising the tallies of interactions between ligand 
phosphate groups (P54000) and receptor hydroxyl groups (O21100) lead to a ~15% performance decrease. 
Other features representing phosphate group interactions are highly important for all neural network 
models. The most important features to the GBDT model, however, are limited to interactions involving 
ligand oxygen, carbon, and hydrogen atoms, in addition to overall ligand flexibility. These features likely 
apply to a wider range of ligands and suggest that GBDT-based models may be more robust across different 
types of receptor-ligand interactions. Indeed, randomising the most important feature led to a 
performance drop of less than 2.5%. This excellent robustness may explain the superior docking and 
screening power of this type of algorithm compared to NN-based models. Notably, feature importance 
differs minorly between neural network architectures, and majorly between neural network and GBDT 
models. This heterogeneity in feature weightings explains the increased performance achieved when 
combining the models to form a consensus. Each model favours different features, which are then 
combined to yield a score and certainty with superior performance to previous scoring functions.

Figure 7. 10 features with highest influence on performance for six individual machine-learning models. 
Highly influential features for each model are listed on the y-axis. The x-axis represents the decrease in 
model validation set AUCPR when a given feature is replaced with random noise; a greater decrease 
indicates greater reliance on a given input feature for making predictions. 

Conclusions

Classical structure-based virtual screening approaches suffered from too low or too variable predictive 
performance, which made many practitioners sceptical about their utility as a primary screening 
methodology for small molecules. In recent years, machine-learning scoring functions offered superior 
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scoring functions for SBVS, although their performance seemed to have reached a limit given the number 
of experimental structures of protein-ligand complexes available. In this work, we show that this needs not 
to be the case. It is possible to rationally identify biases and limitations of previous MLSFs, address them, 
and substantially improve their predictive performance as a result.

To achieve high-performance in SBVS, it is key that the training data includes the type of inputs that the 
model will use when deployed. Thus, training and validation in this study have been performed on docked 
poses; no crystallographic ligand pose was used. Additionally, we have shown that both the docking and 
screening power of MLSFs can be improved by augmenting the training datasets with multiple RMSD-
labelled docked poses. These additional poses can be readily labelled and provided to classifiers, which can 
outperform current regression-based scoring functions on third party datasets, especially in terms of early 
enrichment. As benchmarking results are not always reflective of prospective performance[42], validation 
of SCORCH in prospective studies is an important next step. Additionally, given prior reports indicating that 
including lower quality samples to increase the amount of training data can improve SF performance[68], 
repeating this multi-pose methodology on an expanded dataset with less stringent criteria for structure 
inclusion may improve performance further. We believe the pose-specific training data and property-
matched decoys have forced our MLSFs to better learn the nature of receptor-ligand interactions. 
Remarkably, the MLSFs produced recapitulate to some extent the relative binding affinities of different 
compounds, although these affinities were never shown to the models. We have also demonstrated the 
benefits of using a consensus of different algorithms. Furthermore, our model certainty metric allows the a 
priori identification of high or low enrichment in virtual screening, indicating how likely SBVS is to succeed 
on a specific target. 

Taken together, these strategies have led to superior screening and docking power, as validated by two 
independent benchmarking datasets. Our multi-pose trained consensus model, SCORCH, thus advances the 
capabilities of current SBVS and positions it as a promising methodology for primary compound screening. 
SCORCH is freely available to the scientific community.

Data and Code availability

The scoring function code, full documentation, and several deployment options are available at 
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